博客
关于我
java 基础编程练习6
阅读量:713 次
发布时间:2019-03-21

本文共 558 字,大约阅读时间需要 1 分钟。

小乐乐走楼梯的方法数遵循斐波那契数列的规律。当n=1时,只有一种方法;当n=2时,有两种方法。对于更大的n,方法数等于前一阶楼梯的方法数加上第二阶楼梯的方法数,这正是斐波那契数列的定义。通过递归计算,我们可以得到小乐乐的方法数。

具体步骤如下:

  • 当n=1时,返回1。
  • 当n=2时,返回2。
  • 否则,递归调用fun(n-1)和fun(n-2)并相加返回结果。
  • 代码如下:

    public class Main {    public static void main(String[] args) {        Scanner in = new Scanner(System.in);        int n = in.nextInt();        System.out.print(fun(n));    }    private static int fun(int n) {        if (n == 1) {            return 1;        } else if (n == 2) {            return 2;        } else {            return fun(n - 1) + fun(n - 2);        }    }}

    转载地址:http://rbjrz.baihongyu.com/

    你可能感兴趣的文章
    OkHttp源码解析(构建者模式、责任链模式、主线流程)
    查看>>
    OkHttp透明压缩,收获性能10倍,外加故障一枚
    查看>>
    OKR为什么到今天才突然火了?
    查看>>
    ol3 Demo2 ----地图搜索功能
    查看>>
    OLAP、OLTP的介绍和比较
    查看>>
    OLAP在大数据时代的挑战
    查看>>
    Vue.js 学习总结(12)—— 微前端实践思考与总结
    查看>>
    oldboy.16课
    查看>>
    OLEDB IMEX行数限制的问题
    查看>>
    ollama 如何删除本地模型文件?
    查看>>
    ollama-python-Python快速部署Llama 3等大型语言模型最简单方法
    查看>>
    Ollama怎么启动.gguf 大模型
    查看>>
    ollama本地部署DeepSeek(Window图文说明)
    查看>>
    ollama运行多模态模型如何进行api测试?
    查看>>
    OMG,此神器可一次定一周的外卖
    查看>>
    Omi 多端开发之 - omip 适配 h5 原理揭秘
    查看>>
    On Error GOTO的好处
    查看>>
    onclick事件的基本操作
    查看>>
    oncopy和onpaste
    查看>>
    onCreate中的savedInstanceState作用
    查看>>